
t +61 3 9600 2339
w readify.net

Managing
database schemas
in a Continuous
Delivery world

January 2015

2 / Copyright © 2014 by Readify Pty Ltd ABN 13 097 323 781

Executive Summary

One of the trickier technical problems to address when moving to a continuous delivery development

model is managing database schema changes. Unlike software changes, it’s hard to roll back or roll

forward when database changes have been applied. Typically, organisations address this problem by

having DBAs manually apply changes so they can manually correct any problems, but this has the

downside of providing a bottleneck to deploying changes to production and also introduces human error

as a factor.

A large part of continuous delivery involves the setup of a largely automated deployment pipeline that

increases confidence and reduces risk by ensuring that software changes are deployed consistently to

each environment (e.g. dev, test, prod).

To fit in with that model it’s important to automate database changes so that they are applied

automatically and consistently to each environment thus increasing the likelihood of problems being

found early and reducing the risk of database changes.

This report outlines an approach to managing database schema changes that is compatible with a

continuous delivery development model, the reasons why the approach is important regardless of

development model and some of the considerations that need to be made when taking this approach.

The approaches discussed in this document aren’t specific to continuous delivery and in fact should be

considered regardless of your development model.

3 / Copyright © 2014 by Readify Pty Ltd ABN 13 097 323 781

The problem with manual schema management

Managing database schemas to be in sync with software development is traditionally a complex task

fraught with problems such as:

• Tedious manual processes

• Human error

o Applying the wrong scripts

o Applying scripts in the wrong order

o Forgetting to apply scripts

o Applying scripts multiple times

• Confusion over the current “version” of the database in particular with regards to different

environments (e.g. dev vs test vs production)

• Inefficiencies for the development of software when using local databases due to developers

being required to constantly modify their database after pulling in changes from other

developers while the database schema is actively in development

o Sometimes developers will instead use a shared development database to overcome this,

but this is not recommended since there is additional pain associated with breaking

changes and instability

• DBAs becoming a bottleneck for releasing changes to production (and worse pre-production)

and reducing the agility of teams and increasing deployment risk (through batching of changes)

4 / Copyright © 2014 by Readify Pty Ltd ABN 13 097 323 781

Database Migrations

The recommended approach of this report to address the problems of manual schema management and

that is compatible with a Continuous Delivery development model is to use the database migrations

technique.

This technique involves all schema changes being applied as a “migration”, which is a file that describes

that schema change (possibly as SQL, possibly in a Domain Specific Language (DSL) via a programming

language) and is committed in source control alongside the software that uses the version of the

database that results from applying that migration. Migrations will typically have a timestamp or

incrementing integer number associated with them to designate the order in which they should be

applied.

These migrations can then be automatically applied to the database in any environment by a “migration

tool/library”. These tools will automatically determine which migrations that are defined have and haven’t

been applied to the current database and only apply the ones that haven’t already been applied in the

correct order. The migrations will typically be applied within a transaction so if the migrations fail then

they will be rolled back.

The advantages of this approach are:

• Schema changes are made automatically without human intervention thus reducing the chance

of human error.

• Schema changes are consistently applied in each environment, so by the time the migrations are

applied to production they would have already been successfully applied to dev, test and any

other pre-production environments. This significantly reduces the risk of schema changes

• Schema changes are kept in source control next to the source code that uses the schema that is

defined at that version. This means that any version of the software can be checked out and run

and, assuming a fresh database was also used (before any migrations, or at least before the

database version of the code that was checked out), the state of the application at that time can

be tested against – this can assist with finding bugs in specific deployments.

• Your database is now “versioned” (just like the software application) and you can inspect the

version of your database in any environment and know what changes have and haven’t been

applied. This is invaluable when looking for environment-specific bugs.

• There is no confusion about what scripts do/don’t need to be applied to a database at any time

and scripts are never forgotten to be run – they always get automatically applied.

• Developers can easily use separate local databases since any database schema changes they pull

in from other developers will automatically be applied.

• Any schema change conflicts will be exposed and thus resolved earlier (development time, or at

least on the continuous integration server if they are run as a test), which significantly improves

development efficiency and reduces risk.

• Schema changes will always be automatically applied in the correct order.

5 / Copyright © 2014 by Readify Pty Ltd ABN 13 097 323 781

Database Migrations and Continuous Delivery

Database Migrations can be integrated to a Continuous Delivery pipeline in one of two ways:

• Automatically run on app start

o Requires the application to have DDL permissions, which could be a security risk

o Means it’s possible to do a deployment that will be broken due to database migrations

failing

o Simpler to set up

• Run as a deployment step before the deployment of the application software

o If the running of the database migrations fails, then fail the deployment

The other consideration is whether or not the database migrations will result in a schema that is

incompatible with the application code. To avoid this problem, it’s a good idea to run automated tests

against the application code that talk to a migrated schema. This requires an isolated database on the

continuous integration server that the tests can talk to, which can be achieved by:

• Run the database migrations once only for the whole test run and use a transaction around each

test run that is then rolled back afterwards:

o This can be done as a cross-cutting concern without modifying test or application code

by using something like .NET’s TransactionScope (in combination with the MSDTC

service)

o This can also be done by sharing a database connection with an open transaction

between the different components (seeding, doing the work and verification)

o If you are using an ORM then you may want to create new session/context instances for

each of seeding/work/verification so that their internal cache doesn’t interfere with the

test run and just ensure they each share the same database connection

• Drop and recreate the entire database each run; possibly by using in-memory version of the

database for speed

• Delete any data from the test run after/before each run

o This can be done manually in each test (but it’s likely this will get missed occasionally)

o This can also be done using the technique described here

http://lostechies.com/jimmybogard/2013/06/18/strategies-for-isolating-the-database-

in-tests/ (but you need to be careful to not delete seed data)

http://lostechies.com/jimmybogard/2013/06/18/strategies-for-isolating-the-database-in-tests/
http://lostechies.com/jimmybogard/2013/06/18/strategies-for-isolating-the-database-in-tests/

6 / Copyright © 2014 by Readify Pty Ltd ABN 13 097 323 781

Rollbacks

Depending on the migration tool being used, database migrations can include an up definition (apply the

migration) and a down definition (rollback the migration). This then allows you to move a database back

(or forward) to any specific version. On first thought, this can be used in combination with software

rollbacks if an error is deployed to production. However, this is fraught with danger:

• If the corresponding migration that caused the break is modified then every single environment

that migration had previously been applied to also needs to be rolled back (that also includes all

developer machines with that migration applied).

• Down migrations often result in data loss (by necessity, if the up migration added a table the

down migration has to drop it) and that might be undesirable.

• If the down migration fails as well then you are in trouble. Given down migrations are not often

applied this is actually quite likely.

• It’s complex to implement a proper rollback in most Continuous Delivery pipeline tooling

because you need to rollback the database version (which has to be worked out somehow) in the

code that was just deployed (since it will have the definition of the migrations that need to be

deployed) and then rollback to the previous version of the software.

o You may need to make this a manual process, or provide a tool of some sort to allow

someone to go in and select a version to rollback to (and then manually trigger a

deployment of the previous code version).

• Another way to address the problem is by dealing with breaking changes carefully (e.g. column

renames, dropping tables, etc.) – if you can ensure that the schema changes are generally not

breaking changes (or the breaking change is deferred for a deployment or two – e.g. have the

old and new column side-by-side for a while) then you can safely perform rollbacks.

o It’s important to keep in mind that this also introduces some complexity around keeping

track of those in-progress changes, what has been deployed where and managing

technical debt (i.e. not leaving the in-progress changes behind).

To avoid a lot of these issues and take advantage of the fact that the Continuous Delivery pipeline allows

the software team to quickly and safely get changes into production a strategy that is often used is to

never roll-back (software or database changes), but to always roll-forward (i.e. fix the bug, put that

change through the Continuous Delivery pipeline and apply to all environments).

Regardless of whether a rollback or roll-forward is used, it’s important that once the issue is fixed the

team stops work and determines how that bad change was able to get to production without being

picked up first. Then as part of the continuous improvement focus the team should make a change to the

Continuous Delivery pipeline to ensure that particular problem can never make its way to production

again. This might involve adding better seed data to a pre-production environment, adding automated

tests to pick up problems with the migrations, or something else.

7 / Copyright © 2014 by Readify Pty Ltd ABN 13 097 323 781

Some migration tools don’t bother with down migrations because of this complexity (DbUp is an

example) and even if the tool you are using does support them you can choose not to implement them.

Down migrations can be handy for debugging a specific version in a pre-production environment or

useful in development when a developer is making changes to migrations they are developing. If you

decide you need down migrations then the recommendation would be to add an automated test that

takes a fully migrated database all the way back down and then back up – that gives some confidence

that the down migrations are likely to work (but isn’t perfect since sometimes production data violates

integrity constraints).

8 / Copyright © 2014 by Readify Pty Ltd ABN 13 097 323 781

Database Migrations are immutable

For the reasons described in the Rollbacks section above it’s important that in a Continuous Delivery

environment Database Migrations are considered immutable. This is because the master/trunk/mainline

branch can be deployed at any moment and as soon as you change a migration those changes will not

get applied in any environment that already has that migration version noted as being applied.

This ties into the granularity of migration changes:

• Continuous Delivery requires that every separate set of schema changes that each developer

makes are considered a separate migration

• If a project involves a lot of database changes then this can get potentially unwieldy as the

number of migrations grows and you may decide to allow migrations to be changed while they

are isolated to development environments

o This is directly incompatible with Continuous Delivery and can be hard to manage (i.e.

ensuring that the migrations are “done” before moving past the development

environments)

o If migrations are allowed to be changed while in development then the developers need

an easy to way to get their database to a clean slate and re-apply all migrations (e.g. a

.bat file or console application or deleting the database versions and ensuring all

migration scripts can be safely re-run)

o This complicates the development process and can cause some merging pain on the

migrations (if there is a lot of churn on specific migrations), but it also results in less

migrations for database-heavy applications

• Sometimes it makes sense to try and roll-up migrations to a single file for a release at some

defined point along the development cycle (e.g. each sprint), but this further complicates the

release process (how do you correlate the rolled up file with the previously deployed migration

numbers that are contained in it) and should be avoided unless absolutely necessary

9 / Copyright © 2014 by Readify Pty Ltd ABN 13 097 323 781

Other considerations when using Database Migrations

There are a number of things to watch out for when using Database Migrations:

• While database migrations mean that a DBA isn’t needed to manually apply the changes that

doesn’t mean there isn’t a need for DBA skillsets

o DBAs can still provide advice to development teams around the best way to model the

schema for their application and can collaborate with the developers to create the

migrations

o DBAs can be on hand to help with any problems that do occur when a deployment is

made – the need for this should reduce over time as more confidence is gained by the

deployment pipeline, but if this concept is new then there is likely to be more

involvement needed

o DBAs can be kept up to date with schema changes to provide advice or raise any

potential issues by sending an automated diff of the schema differences contained in the

migrations for a particular deployment as part of the deployment pipeline (this is a

relatively simple thing to write code for)

• Ideally, a new developer or a tester testing against an ad hoc software revision should be able to

quickly and easily spin up a fresh copy of a database before any migrations have been applied

o This is easy for an application that has used migrations from the start, but slightly more

difficult for a legacy application to which migrations have been added

• Seed data should be also be automatically added; depending on the Migration Tool being used,

this can be achieved by a set of SQL statements, or something more programmatic like loading a

CSV of data

• Testing data is slightly more tricky since you want to apply it to some environments and not

others

o If you want to apply the testing data once only, on all environments apart from a set of

specific environments (e.g. production) then it makes sense to apply the data in a

migration that has guard clauses to prevent execution in those environments

o If you want the ability to apply the testing data in a more ad hoc fashion then you should

use some other means to apply the data – e.g. a custom console application, or a set of

SQL scripts that can be manually applied

• Ideally, all schema changes should be applied using migrations otherwise the following

disadvantages apply:

o Not all schema changes are automatic leaving human error as a problem

10 / Copyright © 2014 by Readify Pty Ltd ABN 13 097 323 781

o Not all schema changes are consistently applied in all environments leaving a risk that

some of the manual changes or indeed the automatic changes might not work when

applied to production

o There is no clear way to tell the complete “version” of the database

o There is confusion about which scripts have / haven’t been run

o Local development databases are trickier to facilitate

o Not all schema change conflicts will be exposed early

o Schema changes might not be applied in the correct order (e.g. if the automatic

migrations rely on the schema changes from manual changes or vice versa)

• Stored procedures and functions are software rather than schema changes and often it is thus

easier to manage them differently

o One way to do this is to keep them in source control and automatically apply the latest

version to the database every time the schema migrations have been applied

o This ensures that the version in source control is always the version applied to the

database

• Some ORMs provide the ability to automatically change the schema to match the object model

defined in code

o This is really handy at development time, particularly when spiking changes or working

on a proof-of-concept application

o This is dangerous and risky for a production application and should be avoided – it can

result in unpredictable schemas, poor performance schemas and data loss

• If the database engine you are targeting doesn’t allow transactions around DDL statements then

applying migrations is more risky because a problem that occurs can leave the database in a

semi-modified state – an example of this is Oracle database

• Techniques like blue-green deployments are tricky to perform unless there is a way to have a hot

copy of the database that can also be switched at the same time (not easy to achieve)

• Sometimes, migrations can fail in production because they time out and are too slow to be

applied (an example might be adding a new column with a default value to a table with millions

of records)

o Getting production-like data earlier in the pipeline is important in these scenarios to

ensure that the problem is picked up earlier

o Increasing the timeout of the migrations might be necessary, but if you do that it’s

important to ensure migrations are applied separately to the deployment of the

application rather than alongside

11 / Copyright © 2014 by Readify Pty Ltd ABN 13 097 323 781

o Separating out slow changes to be applied when there is lower load on the database

may help, but it complicates the release process

o Identifying the migration modifications that are slow to run is important so they can be

identified early and some sort of appropriate action taken (e.g. in the above example,

making the new column nullable and adding the default value in the application code

instead may be an option)

12 / Copyright © 2014 by Readify Pty Ltd ABN 13 097 323 781

Database Migrations and .NET applications

There are three main migration tools that we use at Readify for applying migrations to .NET applications:

• DbUp – An Open Source library that runs SQL scripts (up migration only) against SQL Server

(including SQL CE and Azure SQL Database). http://dbup.github.io/

• FluentMigrator – An Open Source library that includes a DSL for defining migrations (up and

down) in code against most database engines.

https://github.com/schambers/fluentmigrator/wiki

• EntityFramework Migrations – Part of the EntityFramework 6 library that includes a DSL for

defining migrations (up and down) in code which can be automatically generated from your

model against most database engines. http://msdn.microsoft.com/en-au/data/ef.aspx

http://dbup.github.io/
https://github.com/schambers/fluentmigrator/wiki
http://msdn.microsoft.com/en-au/data/ef.aspx

	Executive Summary
	The problem with manual schema management
	Database Migrations
	Database Migrations and Continuous Delivery
	Rollbacks
	Database Migrations are immutable
	Other considerations when using Database Migrations
	Database Migrations and .NET applications

